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predicted subhalos
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observational biases; sensitive to details
of metal enrichment, feedback processes
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Measured values of V¢« for MW dwarfs
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Observational constraints on dwarfs’ dark matter hosts

Masses of MW dwarfs are

well-constrained at R, 2
(Wolf et al.,Walker et al.)

Directly compare observed satellites
to simulated subhalos at R

o if mass agrees: the subhalo may be able
to host the satellite;

e if mass disagrees: no way for the
subhalo to host the satellite.
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Combined dark matter profile constraints for MW dwarfs
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Adding in subhalos from simulations
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Measured values of V¢« for MW dwarfs
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Observed Milky Way Satellites
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Observed Milky Way Satellites L MC
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Reionization is not the answer

. Median mass for
/ Vmax > 30 km/S
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Of the ~10 biggest subhalos, ~8 cannot host
any known brlght MW satelllte

Image credits:V. Springel / Virgo Consortium;A. Riess /| HST;W.Wang; AAO; M. Schirmer
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Implications

 Option I: massive dark subhalos do exist in the MWV as predicted

» Galaxy formation is stochastic forV < 50 km/s
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Stochastic galaxy formation
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» Galaxy formation is stochastic forV < 50 km/s
» Detection through dark matter annihilation! ~4 per halo with flux > Draco

» Already found? Some ultra-faint galaxies could lie in these subhalos

 Option 2: No massive dark subhalos in MW (ACDM interpretation)

» the subhalo content of the Milky Way is anomalous compared to expectations
» MW’s dark matter halo mass is < 7el | Msun (but this creates other problems)

» baryonic feedback strongly alters structure of subhalos (c.f. Governato)
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MW dwarf structure

30 . .
vmax
40 km/s .
25| - can feedback explain
24 km/s Draco, Ursa Minor, Sextans?
— similar luminosities, stellar
— 20 populations; drastically different
g sizes and inferred halo masses
=,
=S 15k
10
/ S A= = &
= SE=8 = = S S
S £=538 < > S
— A O - @) =
5 ] ] ] ] ]
0.2 0.4 0.6 0.8 1.0
r [kpc]

MBK, Bullock, & Kaplinghat 201 Ib (in prep.)



MW dwarf structure

30 .

Factor of 2 in mass
25 F

24 km/s

20

‘/circ [km/ S]

MBK, Bullock, & Kaplinghat 201 Ib (in prep.)



Implications

 Option I:massive dark subhalos do exist in the MWV as predicted

» Galaxy formation is stochastic forV < 50 km/s
» Detection through dark matter annihilation! ~4 per halo with flux > Draco

» Already found? Some ultra-faint galaxies could lie in these subhalos

 Option 2: No massive dark subhalos in MW (ACDM interpretation)

» the subhalo content of the Milky Way is anomalous compared to expectations
» MW’s dark matter halo mass is < 7el | Msun (but this creates other problems)

» baryonic feedback strongly alters structure of subhalos (c.f. Governato)

* Option 3: No massive dark subhalos in MW (modifications to ACDM)

» warm(ish) dark matter, suppression scale of ~40-50 km/s

» more complicated dark matter physics
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galaxy formation: are we missing physics at <50 km/s ?

—0—0820.75

—<>—GS=0.9

Tikhonov & Klypin 2009

—O— Local Volume
—— GHASP (2008)

S Tully & Pierce (2000)

-20

-18




10
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galaxy formation: are we missing physics at <50 km/s ?
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because we know structure as well as abundance

* Not possible to put bright MWV satellites in most massive MW subhalos (now or
at infall) from current ACDM simulations = challenge for galaxy formation models
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% details in “Too big to fail? The puzzling darkness of massive Milky Way subhalos™
M. Boylan-Kolchin, J. S. Bullock, M. Kaplinghat (201 1), MNRAS 415, L40 (arXiv:1103.0007)



